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1. Introduction

At the level of examples, current-algebraic conformal field theory [1–11] and orbifold the-

ory [11–22] are almost as old as string theory itself [23–26]. It is only in the last few years

however that the orbifold program [27–37] has in large part completed the local description

of the general closed-string orbifold conformal field theory A(H)/H. The program con-

structs all orbifolds at once, using the principle of local isomorphisms [29–32, 37] to map

the H-symmetric CFT A(H) into the twisted sectors of A(H)/H. For the reader interested

in particular topics, the following list may be helpful:

• the twisted current algebras and stress tensors of the general current-algebraic orb-

ifold [29–31],
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• the twisted affine-primary fields, twisted operator algebras and twisted KZ equations1

of all WZW orbifolds [32, 33, 35, 36],

• the world-sheet action formulation of all WZW and coset orbifolds in terms of so-

called group orbifold elements with diagonal monodromy [32–36],

• the action formulation and twisted Einstein equations of a large class of sigma-model

orbifolds [37],

• the general free-bosonic avatars of these constructions on abelian g and the explicit

form of their twisted vertex operators [33, 35, 37].

A pedagogical review of the program is included in ref. [36]. Recent progress at the level

of characters has been reported in refs. [27, 39]. Complimentary discussions of WZW

twist fields and twisted free-bosonic vertex operators are found in refs. [40, 41] and [42]

respectively.

In a second section, the technology of the orbifold program has also been applied to

general twisted open-string conformal field theory:

• the WZW orientation orbifolds, including their branes and twisted open-string KZ

equations [43],

• the action formulation, branes and twisted Einstein equations of WZW, coset and

sigma-model orientation orbifolds [44],

• the open-string WZW orbifolds [45],

• the general twisted open WZW string, including all T -dualizations, branes, non-

commutative geometry and twisted open-string KZ systems [46],

• the general twisted boundary-state equation of twisted open WZW strings [33, 45,

46],

• free-bosonic avatars of these constructions on abelian g [43, 45, 46].

The general orientation-orbifold CFT, which is constructed by twisting world-sheet

orientation-reversing automorphisms, is apparently2 a twisted generalization of orientifold

CFT [47]. The construction of the general twisted open WZW string is a synthesis of

closed-string orbifold theory and the theory of untwisted open WZW strings given in ref.

[48]. Complementary discussions of the untwisted open WZW string are found in refs. [49,

50], and there is also a complementary literature on twisted branes (see e.g. ref. [51]) and

permutation branes [52] on group manifolds.

The present series of papers opens a third, more phenomenological section in the

orbifold program — in which some of the simplest conformal-field-theoretic results of the

1An abelian twisted KZ equation for the inversion orbifold x → −x was given earlier in ref. [38].
2I will have more to say about the relation between orientation orbifolds and orientifolds in succeeding

papers of this series.
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program are applied to physical string theory: My goal here is to ask whether simple

orbifolds of permutation-type can describe new physical string systems at higher central

charge, for example the values

ĉ = 26K, K = 2, 3, 4, . . . (1.1)

which are found in the critical free-bosonic orbifolds of permutation-type. These orbifolds

begin with one or more copies of the critical closed bosonic string, so that (choosing the

closed-string critical dimension d = 26) many examples of this type have already been

studied at the level of orbifold conformal field theory:

• the twisted open-string sectors of the free-bosonic orientation orbifolds [43, 44, 46]

at ĉ = 52,

• the twisted closed-string sectors of the free-bosonic permutation orbifolds [27, 33, 35,

37] at any multiple of c = 26,

• the free-bosonic open-string permutation orbifolds and their T -duals [45, 46] at any

multiple of c = 26

• the generalized [46] closed- and open-string permutation orbifolds at ĉ = 26K, in-

cluding extra automorphisms which act uniformly on each copy of the original closed

string (see also Subsection 4.2).

The corresponding critical superstring orbifolds of permutation-type can also be studied

with central charges

ĉ = 10K, K = 2, 3, . . . (1.2)

or (ĉ, ˆ̄c) = (26K, 10K) for heterotic type. Here the subject is not as well developed, but

some discussion of permutation-orbifold superconformal field theory is found in refs. [22,

27].

The orbifolds of permutation-type have not previously been considered as candidates

for physical string systems. One reason for this may be that the covariant formulation of

the twisted sectors exhibit extra twisted time-like currents,3 and hence extra sets of negative

norm states (ghosts) associated with the higher central charge. It is important therefore

to state the basic hypothesis which underlies this investigation: “Orbifoldization should

not create negative-norm states” where there were none in the original symmetric theory.

There are of course no ghosts in the untwisted sectors of these orbifolds — which are after

all nothing but (symmetrizations of) decoupled copies of ordinary ghost-free strings [54] –

and the orbifold program constructs the twisted sectors directly from the untwisted. On

the basis of this hypothesis then, we are led to expect a natural, extended mechanism for

ghost-decoupling in the twisted sectors of these orbifolds.

In this first installment of the series, I will find and study the classical precursor

of this ghost-decoupling mechanism. The central observation is that each of the twisted

sectors of these orbifolds contains an extended (twisted) Virasoro algebra [27, 55, 35, 43],

3Untwisted theories with two time-like dimensions have been considered in ref. [53].
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which straightforwardly implies a new extended (twisted) world-sheet gravity in each sector.

Because the new extended gravities are in 1-1 correspondence with the conjugacy classes

of all the permutation groups, I will refer to them collectively as the permutation gravities

(or P -gravities). The extended diffeomorphism groups of the permutation gravities clearly

indicate that the corresponding twisted operator-string theories will exhibit new twisted

BRST systems and new extended Ward identities — so that their string amplitudes can be

free of negative-norm states. These and other topics at the operator level will be addressed

in the succeeding papers of the series.

The world-sheet permutation gravities follow closely in the tradition of earlier extended

world-sheet gravities, all of which are associated to extended Virasoro algebras and new

critical central charges. I mention in particular a) the world-sheet supergravities [56] asso-

ciated to superconformal algebras [57, 58], b) the W -gravities [59] associated to W -algebras

[60], and c) the exotic world-sheet gravities of the generic affine-Virasoro constructions [61,

62] associated to K-conjugate (commuting) pairs of Virasoro algebras [2, 10, 11]. Similarly,

one may expect new world-sheet permutation supergravities associated to the extended,

twisted superconformal algebras [27] of superstring orbifolds of permutation-type.

The organization of this paper is as follows. I will consider two classes of examples,

the twisted open-string sectors of the orientation orbifolds in section 2 and the twisted

closed-string sectors of the permutation orbifolds in section 3. For both classes, I use

the extended Virasoro algebras to construct the classical extended Hamiltonian systems

— which then straightforwardly imply the extended action formulations of Polyakov-type.

The final forms of these actions, including identification of the extended (twisted) metrics,

are found in eqs. (2.52) and (3.28). The corresponding extended actions of Nambu-type

are found in Subsections 2.8 and 3.4.

The open-string orientation-orbifold sectors are all governed by the simple case of Z2-

permutation gravity, but the derivation in this case is complicated by the need to follow the

boundary conditions (branes) of the twisted open strings. The replacement of boundary

conditions by monodromies simplifies the derivation for the closed-string sectors of the

permutation orbifolds, but here one encounters the systematics of the general world-sheet

permutation gravity. In this case, I have also been able to find a simpler, complementary

derivation of the extended actions (see Subsection 3.5) directly from the principle of local

isomorphisms. For this reason, and because the permutation orbifolds are more familiar,

the reader may wish to begin with section 3.

For generality, the results are worked out first for the orbifold CFT’s at ĉ = Kd,

where d is the number of free bosons in each copy of the untwisted closed-string CFT.

The results for the critical orbifold-string theories at d = 26 and ĉ = 26K are however

easily obtained at any stage of the development and, using our quantitative knowledge of

the permutation gravities, I finally return in section 4 to the conjectured properties of the

critical orbifold-string theories at the operator level.
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2. Z2-permutation gravity in the orientation orbifolds

2.1 Extended virasoro algebra and extended hamiltonian

The general orientation orbifold [43, 44, 46] is constructed as

A(H−)

H−
, H− = Z2(world sheet) × H (2.1)

where A(H−) is any closed-string CFT with central charge c and H− is any symmetry

group which includes world-sheet orientation-reversing automorphisms. Like orientifolds

[47], each orientation orbifold contains an equal number of closed-and open-string sectors

but, in contrast to orientifolds, the generic orientation-orbifold sector contains fractional

modeing and the open-string sectors live at ĉ = 2c. The closed-string sectors (associated to

the orientation-preserving subgroup of H−) form an ordinary (space-time) orbifold [27–37]

by themselves.

I concentrate here on the twisted open-string sectors (associated to the orientation-

reversing automorphisms), each of which exhibits an order-two orbifold Virasoro algebra

[27, 55, 35, 43]

[

L̂u

(

m +
u

2

)

, L̂v

(

n +
v

2

)]

=

(

m − n +
u − v

2

)

L̂u+v

(

m + n +
u + v

2

)

(2.2a)

+
ĉ

12

(

m +
u

2

)((

m +
u

2

)2

− 1

)

δm+n+ u+v
2

,0

ĉ = 2c, ū = 0, 1. (2.2b)

Here and below I assume the standard periodicity for all the spectral indices, so that ū is

the pullback of u to the fundamental range – and up and down indices u are equivalent.

The (integral) Virasoro subalgebra of the extended algebra (2.2) is generated by {L0(m)},

and section 2 of ref. [43] gives a simple explanation of the transition c → ĉ = 2c for the

open-string sectors as well as the presence of the twisted generators
{

L̂1

(

m + 1
2

)

}

. In

what follows, I will use essentially standard methods [63, 61] and the classical analogue

of the extended Virasoro generators to construct the correspondingly-extended classical

Hamiltonian of the general open-string orientation-orbifold sector.

I begin this discussion with the extended left- and right-mover stress tensors of the

sector

θ̂±u (ξ, t) ≡
1

2π

∑

m∈Z

L̂u

(

m +
u

2

)

e−i
(

m+
u
2

)

(t±ξ), ū = 0, 1 (2.3a)

θ̂±u (ξ + 2π, t) = (−1)uθ̂±u (ξ, t) (2.3b)

θ̂∓u (ξ, t) = θ̂±u (−ξ, t) (2.3c)

both of which are constructed from the same, single set of extended Virasoro generators.

These are the extended stress tensors of the conformal field theory, whose form suffices to
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compute the following equal-time bracket algebra in the classical theory

{θ̂+
u (ξ, t), θ̂+

v (η, t)} = i(∂ξ − ∂η)(θ̂
+
u+v(η, t)δu

2
(ξ − η)) (2.4a)

= iθ+
u+v(η, t)∂ξδu

2
(ξ − η) (2.4b)

−iθ̂+
u+v(ξ, t)∂ηδ v

2
(η − ξ)

δu
2
(ξ − η) =

1

2π

∑

m∈Z

e−i
(

m+
u
2

)

(ξ−η) = e−i
u
2 (ξ−η)δ(ξ − η). (2.4c)

from the classical analogue of the extended Virasoro algebra. The quantity in eq. (2.4c)

is called a phase-modified delta function [37, 45, 46], and the other equal-time brackets of

{θ̂
±

u } follow from this result and eq. (2.3c).

In terms of the classical extended stress tensors, one may define the classical extended

Hamiltonian Ĥ of the sector, as well as the generator Ĝ of time-independent gauge trans-

formations

Ĥ ≡

∫ 2π

0
dξ

∑

u

v̂u
+(ξ, t)θ̂+

u (ξ, t), Ĝ ≡

∫ 2π

0
dξ

∑

u

ǫ̂u
+(ξ)θ̂+

u (ξ, t) (2.5a)

v̂u
+(ξ + 2π, t) = (−1)uv̂u

+(ξ, t), ǫ̂u
+(ξ + 2π) = (−1)uǫ̂u

+(ξ), ū = 0, 1 (2.5b)

where v̂ and ǫ̂ are respectively the multipliers and the gauge parameters. Note that the

densities here have trivial monodromy. We are interested however in the equivalent open-

string forms of Ĥ and Ĝ, which are integrated over the strip 0 ≤ ξ ≤ π:

Ĥ =

∫ π

0
dξ

∑

u

(v̂u
+(ξ, t)θ̂+

u (ξ, t) + v̂u
−(ξ, t)θ̂−u (ξ, t)) (2.6a)

Ĝ =

∫ π

0
dξ

∑

u

(ǫ̂u
+(ξ)θ̂+

u (ξ, t) + ǫ̂u
−(ξ)θ̂−u (ξ, t)) (2.6b)

v̂u
−(ξ, t) = v̂u

+(−ξ, t), ǫ̂u
−(ξ) = ǫ̂u

+(−ξ). (2.6c)

In what follows, I will work directly with these open-string forms — including the following

strip boundary conditions for all n ∈ Z≥0

∂n
ξ v̂u

−(0, t) = (−1)n∂n
ξ v̂u

+(0, t), ∂n
ξ v̂u

−(π, t) = (−1)n+u∂n
ξ v̂u

+(π, t) (2.7)

which follow from eqs. (2.5b) and (2.6c). The same boundary conditions hold for the

parameters {ǫ̂u
±}, and indeed for the stress tensors {θ̂±u } themselves.

I turn now to the Hamiltonian equations of motion, beginning with the extended

classical constraints

θ̂±u (ξ, t) = 0 ↔ {L̂u

(

m +
u

2

)

= 0}, ū = 0, 1 (2.8)

which are obtained by varying the multipliers in Ĥ. These conditions generalize the stan-

dard classical Polyakov constraints θ̂0 = L̂0(m) = 0, which are included here when ū = 0.

With these extended constraints included in the Hamiltonian formulation, we will not
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be surprised to recover them as well in the equivalent, extended action formulation (see

Subsection 2.7) of each twisted sector.

The other Hamiltonian equations of motion are specified as usual by

˙̂
A = i{H,A} (2.9)

for all observables beyond the multipliers. With the brackets (2.4), this defines the time-

dependence of the gauge-variant stress tensors

˙̂
θ
±

u = ±
∑

v

[

∂ξ(θ̂
±
u+v v̂

v
±) + θ̂±u+v∂ξ v̂

v
±

]

(2.10)

which must reduce to the CFT stress tensors (2.3) in a certain gauge to be discussed below.

Then the time dependence of the multipliers

˙̂v
u

± = ∓
∑

v

v̂u−v
±

↔

∂ ξ v̂
v
±, Â

↔

∂ ξB̂ ≡ Â∂ξB̂ − (∂ξÂ)B̂ (2.11)

is obtained from eq. (2.10) and the requirement that
˙̂

H = 0.

Similarly, the time-independent gauge transformations are specified as

δÂ = i{Ĝ, Â}, δv̂u
± ≡ ∓

∑

v

v̂u−v
±

↔

∂ ξ ǫ̂
v
± (2.12a)

δθ̂±u = ±
∑

v

[

∂ξ(θ̂
±
u+v ǫ̂

v
±) + θ̂±u+v∂ξ ǫ̂

v
±

]

. (2.12b)

It follows that the extended Hamiltonian (2.6a) is gauge-invariant

δĤ = 0 (2.13)

under the gauge group associated to the extended Virasoro algebra.

Among possible gauge conditions, I mention first the (partially-fixed) Polyakov gauge

v̂u
± = v̂0

±δu,0 mod 2 : Ĥ =

∫ π

0
dξ(v̂0

+θ̂+
0 + v̂0

−θ̂−0 ) (2.14)

in which the Polyakov form of the Hamiltonian is recovered. On the other hand, the

conformal gauge

v̂u
± = δu,0 mod 2 : Ĥ =

∫ π

0
dξ(θ+

0 + θ−0 ) = L̂0(0) (2.15)

is a completely-fixed gauge which reproduces the extended stress tensors (2.3) and Hamil-

tonian of the twisted open-string CFT. In particular, the expected time dependence of the

extended stress tensors

∂∓θ̂±u = 0, ū = 0, 1, ∂± ≡ ∂t ± ∂ξ (2.16)

is obtained from eq. (2.10) in the conformal gauge.

– 7 –
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The corresponding extended action formulation of each open-string orientation orbifold

sector can now be obtained by the standard Legendre transformation

Ŝ =

∫

dt

∫ π

0
dξ

∑

u

( ˙̂x
n(r)µu

p̂n(r)µu − v̂u
+θ̂+

u − v̂u
−θ̂−u ) (2.17)

from the phase-space sigma-model form of the extended stress tensors, where x̂ and p̂ are

the twisted coordinates and momenta of each sector. Following the discussion of refs. [63,

61], we know that each extended action will exhibit a further-extended gauge invariance

with world-sheet space- and time-dependent gauge parameters:

ǫ̂u
±(ξ) → ǫ̂u

±(ξ, t), ū = 0, 1 (2.18a)

δv̂u
± = ˙̂ǫ

u

± ∓
∑

v

v̂u−v
±

↔

∂ ξ ǫ̂
v
±, δx̂n(r)µu = {Ĝ, x̂n(r)µu}. (2.18b)

These transformations are in fact a form of the infinitesimal extended diffeomorphisms

of world-sheet Z2-permutation gravity, whose covariant form will be more transparent in

coordinate space. To obtain an explicit form of the extended action however, we must

choose a specific class of models.

2.2 The free-bosonic orientation orbifolds

Ref. [46] gives the phase-space sigma model description of the open-string sectors of the

general WZW orientation orbifold, and it would be interesting to work out the extended

actions4 in this case. I confine the discussion here however to the simple case of the free-

bosonic orientation orbifolds
U(1)d

Z2(w.s.) × H
(2.19)

which are also discussed in that reference as a special case on abelian g. In these cases, the

twisted open-string sectors live at central charge ĉ = 2d.

In the notation of eq. (2.19), the non-trivial element of Z2(w.s.) permutes the left-

and right-mover currents J, J̄ of the untwisted closed-string CFT U(1)d while the extra

automorphisms H act uniformly on the left-and right-movers. More precisely, each open-

string sector of the orientation orbifold is obtained by twisting the action of a world-sheet

orientation-reversing automorphism

[Ja(m), Jb(n)] = [J̄a(m), J̄b(m)] = mGabδm+n,0 (2.20a)

Ja(m)′ = ωa
bJ̄b(m), J̄a(m)′ = ωa

bJb(m) (2.20b)

ωa
cωb

dGcd = Gab, ω ∈ H (2.20c)

m,n ∈ Z, a, b = 1 . . . d. (2.20d)

where the quantity Gab is the tangent-space metric of the untwisted CFT, with inverse

Gab. At any stage in the discussion below, one may substitute the explicit form

U(1)26

Z2(w.s.) × H
: Gab = Gab =

(

−1 0

0 11

)

, a, b = 0, 1, . . . 25 (2.21)

4The CFT (or conformal gauge) action of each open-string WZW orientation-orbifold sector is known

[44] in terms of group orbifold elements on the solid half cylinder
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to obtain the results for the orientation orbifolds of the critical Minkowski-space closed

string. In this case of course, all the twisted open-string sectors live at operator central

charge ĉ = 52.

For each of these twisted open-string sectors, ref. [46] gives the form of the classical

extended stress tensors in terms of the twisted currents of each sector:

θ̂±u (ξ) =
1

8π
Gn(r)µ;n(s)ν

∑

v

Ĵ±
n(r)µv

(ξ)Ĵ±
n(s)ν,u−v

(ξ), ū = 0, 1 (2.22a)

{Ĵ+
n(r)µu

(ξ), Ĵ+
n(s)νv

(η)} = 4πiδn(r)+n(s),0 mod ρ(σ)δu+v,0 mod 2 (2.22b)

×Gn(r)µ;−n(r),ν∂ξδn(r)
ρ(σ)

+ u
2

(ξ − η)

Ĵ±
n(r)µu

(ξ, t) =
∑

m

Ĵn(r)µu

(

m +
n(r)

ρ(σ)
+

u

2

)

e
−i

(

m+
n(r)
ρ(σ)+

u
2

)

(t±ξ)
(2.22c)

Ĵ−
n(r)µu

(0, t) = Ĵ+
n(r)µu

(0, t), Ĵ−
n(r)µu

(π, t) = e
2πi

(

n(r)
ρ(σ)+

u
2

)

Ĵ+
n(r)µu

(π, t). (2.22d)

Here the quantity

Gn(r)µ;n(s)ν = χn(r)µχn(s)νUn(r)µ
aUn(s)µ

bGab (2.23)

= δn(r)+n(s),0 mod ρ(σ)Gn(r)µ;−n(r),ν

is the twisted tangent-space metric of the sector, which is a duality transformation [29, 31,

32, 37] of the untwisted metric. The quantities {χ} are normalization constants and G. in

the extended stress tensors is the inverse of G.. The unitary eigenmatrices U in the duality

transformation (2.23) are determined by the so-called H-eigenvalue problem [29, 31, 32,

37] of each automorphism ω (see eq. (2.20))

ωa
b(U †)b

n(r)µ = (U †)a
n(r)µe

−2πi
n(r)
ρ(σ) , ω ∈ H (2.24a)

n̄(r) ∈ (0, 1, . . . ρ(σ) − 1) (2.24b)

where ρ(σ), n(r), µ are the order and the spectral and degeneracy indices respectively of ω.

Following convention in the orbifold program, all quantities are periodic n(r) → n(r)±ρ(σ)

in the spectral indices, n̄(r) is the pullback of n(r) to the fundamental region, and I have

suppressed explicit sums over repeated indices {n̄(r), µ} in the stress tensors.

For the phase-space formulation, we also need the quasi-canonical realization of the

twisted currents [46]

Ĵ+
n(r)µu

= 2πp̂n(r)µu + Gn(r)µ;n(s)ν∂ξ x̂
n(s)ν,−u (2.25a)

Ĵ−
n(r)µu

= (−1)u+1(2πp̂n(r)µu − Gn(r)µ;n(s)ν∂ξx̂
n(s)ν,−u) (2.25b)

where {x̂n(r)µu} and {p̂n(r)µu} are the extended, twisted coordinates and momenta. Be-

cause of the extra label ū = 0, 1, each twisted open-string sector has exactly 2d extended

coordinates5 in agreement with the central charge ĉ = 2d of each of these sectors. The

5As an example, the automorphism ω = −1 gives ρ(σ) = 2, U = 1, n̄ = 1 and µ = a, so that this

twisted sector has d coordinates {x̂1a0} with DN boundary conditions and d coordinates {x̂1a1} with NN

boundary conditions. This and many other examples are further discussed in refs. [43, 44, 46].
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complete quasi-canonical algebra of x̂ and p̂ (including the twisted non-commutative ge-

ometry of x̂ with itself) is given in eq. (4.33) of ref. [46], but we will need here only the

brackets of the twisted coordinates with the currents [46]:

{Ĵ+
n(r)µu

(ξ), x̂n(s)νv(η)} = −2πiδn(r)µu
n(s)νv(δȳ(r,u)(ξ−η)+(−1)u+1δȳ(r,u)(ξ+η)) (2.26a)

{Ĵ−
n(r)µu

(ξ), x̂n(s)νv(η)} = −2πiδn(r)µu
n(s)νv((−1)u+1δ−ȳ(r,u)(ξ−η)+δ−ȳ(r,u)(ξ+u)) (2.26b)

ȳ(r, u) =
n̄(r)

ρ(σ)
+

ū

2
. (2.26c)

These brackets, the extended Hamiltonian (2.6a) and the Hamiltonian equations of motion

(2.9) suffice to compute the derivatives of the twisted coordinates:

˙̂x
n(r)µu

=
1

2
Gn(r)µ;n(s)ν

∑

v

(v̂v
+Ĵ+

n(s)ν,v−u
+ (−1)u+1v̂v

−Ĵ−
n(s)ν,v−u

) (2.27a)

∂ξx̂
n(r)µu =

1

2
Gn(r)µ;n(s)v

∑

v

(Ĵ+
n(s)ν,−u

+ (−1)uĴ−
n(s)ν,−u

). (2.27b)

The spatial derivative in (2.27b) follows easily from the phase-space realization of the

twisted currents.

Finally, I give the extended infinitesimal gauge transformation of the twisted coordi-

nates

δx̂n(r)µu =
1

2
Gn(r)µ;n(s)ν

∑

v

(ǫ̂v
+Ĵ+

n(s)ν,v−u
+ (−1)u+1ǫ̂v

−Ĵ−
n(s)ν,v−u

) (2.28)

which follows (in parallel to ˙̂x) from eq. (2.12a).

2.3 Coordinate-space, branes and twisted currents

We may now begin the passage to coordinate space, where world-sheet Z2-permutation

gravity can be seen in covariant form.

I begin with the boundary conditions or branes at the ends of the twisted open strings

˙̂x
n(r)µ0

(0) = ∂ξx̂
n(r)µ1(0) = 0 (2.29a)

cos

(

n(r)π

ρ(σ)

)

˙̂x
n(r)µu

(π) − i sin

(

n(r)π

ρ(σ)

)

∑

v

v̂v
+(π)∂ξ x̂

n(r)µ,u−v(π) = 0 (2.29b)

which follow from eq. (2.27) and the boundary conditions (2.7), (2.22d) on the multipliers

and the currents. Not surprisingly, the branes are quite different at the two ends of the

twisted string — and I note in particular that the branes at π depend on the boundary

values of the multipliers (see also eq. (2.37e)).
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To move further into coordinate space, one needs to solve for the momenta in terms

of the time derivatives. The required result

p̂n(r)µu =
1

π
Gn(r)µ;n(s)ν

∑

v

(M−1∂t − N∂ξ)uvx̂
n(s)νv (2.30a)

Muv = M (u+v), M (w) ≡ v̂w
+ + (−1)wv̂w

− (2.30b)

(M−1)uv = (M−1)(u+v), M−1
(w) = γ−1(v̂w

− + (−1)w v̂w
+) (2.30c)

Nuv = N(u+v) (2.30d)

2N(0) ≡ γ−1((v̂0
+)2 + (v̂1

−)2 − (v̂0
−)2 − (v̂1

+)2), (2.30e)

2N(1) ≡ v̂1
+v̂0

− + v̂1
−v̂0

+

γ ≡ (v̂0
− + v̂0

+)2 − (v̂1
− − v̂1

+)2 (2.30f)

follows after some algebra from eqs. (2.25) and (2.27). The additional relations

∑

w

M (w)N(w+u) =
1

2
(v̂u

+ + (−1)u+1v̂u
−), ū = 0, 1 (2.31)

are then obtained from the explicit form of the matrices M and N .

As a first application of eq. (2.30), the coordinate-space form of the twisted currents

Ĵ+
n(r)µu

= 2Gn(r)µ;n(s)ν

∑

v

(

M−1∂t −

(

N −
1

2

)

∂ξ

)

uv

x̂n(s)νv (2.32a)

Ĵ−
n(r)µu

= 2(−1)u+1Gn(r)µ;n(s)ν

∑

v

(

M−1∂t −

(

N +
1

2

)

∂ξ

)

uv

x̂n(r)νv (2.32b)

is easily obtained from the phase-space realization (2.25).

2.4 Extended Polyakov action and Z2-twisted permutation gravity

To obtain the explicit coordinate-space form of the extended Polyakov action (2.17) of

these sectors, it is simplest to first express all quantities in terms of the twisted currents

p̂n(r)µu =
1

4π
(Ĵ+

n(r)µu
+ (−1)u+1Ĵ−

n(r)µu
) (2.33a)

Ŝ =

∫

dt

∫ π

0
dξ L̂0 (2.33b)

L̂0 =
∑

u

( ˙̂x
n(r)µu

p̂n(r)µu − v̂u
+θ̂+

u − v̂u
−θ̂−u ) (2.33c)

=
1

8π
Gn(r)µ;n(s)ν

∑

u,v

(−1)v+1(v̂u
+Ĵ−

n(r)µv
Ĵ+

n(s)ν,u−v
+ (+ ↔ −)) (2.33d)

and then use the coordinate-space form (2.32) of the currents.
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It is then straightforward to put the extended Polyakov action in the following “co-

variant” form

Ŝ =
1

4π

∫

dt

∫ π

0
dξ

∑

u,v

h̃mn
uv ∂mx̂n(r)µuGn(r)µ;n(s)ν∂nx̂n(s)νv (2.34a)

∂m = (∂0, ∂1) =

(

∂

∂t
,

∂

∂ξ

)

, h̃mn
uv = ĥmn

(u+v) (2.34b)

h̃00
(w) ≡ 2M−1

(w), h̃10
(w) = h̃01

(w) ≡ −2N(w) (2.34c)

h̃11
(w) ≡ −

1

2
M (−w) +

∑

u

(v̂u
+ + (−1)u+1v̂u

−)N(w+u) (2.34d)

where the matrices M and N are defined in (2.30) and the identity (2.31) was used to

simplify these results. All dependence on the four phase-space multipliers {v̂u
±, ū = 0, 1} is

now collected in what I will call (and later motivate) the extended inverse metric density

of Z2-permutation gravity

h̃mn
uv = h̃nm

uv =

(

h̃mn
(0) h̃mn

(1)

h̃mn
(1) h̃mn

(0)

)

, m, n ∈ (0, 1) (2.35)

which then has four independent degrees of freedom.

As a check on the algebra, I record our coordinate-space results in the completely-fixed

conformal gauge (2.15)

v̂u
± = δu,0 mod 2, M−1

(u) =
1

2
δu,0 mod 2, N(u) = 0 (2.36a)

h̃mn
(0) = ηmn =

(

1 0

0 −1

)

, h̃mn
(1) = 0 (2.36b)

Ŝ =
1

4π

∫

dt

∫ π

0
dξηmnGn(r)µ;n(s)ν

∑

u

∂mx̂n(r)µu∂nx̂n(s)ν,−u (2.36c)

˙̂x
n(r)µ0

(0) = ∂ξx̂
n(r)µ1(0) = 0 (2.36d)

˙̂x
n(r)µu

(π) = i tan

(

n(r)π

ρ(σ)

)

∂ξx̂
n(r)µu(π) (2.36e)

Ĵ+
n(r)µu

= Gn(r)µ;n(s)ν∂+x̂n(r)µ,−u (2.36f)

Ĵ−
n(r)µu

= (−1)u+1Gn(r)µ;n(s)ν∂−x̂n(r)µ,−u (2.36g)

θ̂+
u =

1

8π
Gn(r)µ;n(s)ν

∑

v

∂+x̂n(r)µv∂+x̂n(s)µ,−u−v (2.36h)

θ̂−u =
1

8π
(−1)u+1Gn(r)µ;n(s)ν

∑

v

∂−x̂n(r)µv∂−x̂n(r)µ,−u−v (2.36i)

¤x̂n(r)µu = 0, ∂∓Ĵ±
n(r)µu

= ∂∓θ̂±u = 0 (2.36j)

where η is the flat world-sheet metric. This is exactly the description given in refs. [43,

44, 46] for the twisted open-string CFT’s of the orientation orbifolds. Mixed boundary

conditions such as eq. (2.36e), even at vanishing twisted B field, are well-known [43–46] in
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the orbifold program. The twisted mode expansions of the extended coordinates {x̂}, as

well as their twisted non-commutative geometries, are also given for the CFT’s in ref. [46].

As another check on the algebra, note that the extended action reduces in the Polyakov

gauge (2.14) to the ordinary Polyakov action [64] of each twisted sector

v̂1
± = h̃mn

(1) = 0 (2.37a)

h̃mn
(0) =

√

−h(0) hmn
(0) =

1

v̂0
+ + v̂0

−

(

2 v̂0
− − v̂0

+

v̂0
− − v̂0

+ −2v̂0
+v̂0

−

)

(2.37b)

h(0)
mn ≡ sign(v̂0

− + v̂0
+)e−φ

(

v̂0
−v̂0

+
1
2(v̂0

− − v̂0
+)

1
2(v̂0

− − v̂0
+) −1

)

(2.37c)

h(0)
mph

pn
(0) = δn

m, h(0) ≡ det(h(0)
mn) (2.37d)

Ŝ =
1

4π

∫

dt

∫ π

0
dξ

√

−h(0) hmn
(0) Gn(r)µ;n(s)ν

∑

u

∂mx̂n(r)µu∂nx̂n()ν,−u (2.37e)

where h
(0)
mn is the Polyakov metric and φ is the Weyl degree of freedom. It is then clear that

the “extended inverse metric density” h̃mn
uv in eq. (2.35) is a “two-component” extension

of the inverse metric density
√

−h(0) hmn
(0) of ordinary world-sheet gravity.

2.5 Extended (Z2-twisted) diffeomorphisms

I turn next to the coordinate-space form of the extended diffeomorphisms of Z2-permutation

gravity.

After some algebra, one finds that the extended Hamiltonian gauge transformations

(2.18b) and (2.28) can be put in the covariant form:

δx̂n(r)µu =
∑

v

β̂mv∂mx̂n(r)µ,u−v , ū = 0, 1 (2.38a)

δh̃mn
(u) =

∑

v

{∂p(β̂
pvh̃mn

(u+v)) − (∂pβ̂
mv)h̃pn

(u+v) − (∂pβ̂
nv)h̃pm

(u+v)}. (2.38b)

The explicit form of the four extended diffeomorphism parameters {β̂mu, ū = 0, 1} is

β̂tu ≡
∑

v

(ǫ̂v
+ + (−1)v ǫ̂v

−)M−1
(v−u), ū = 0, 1 (2.39a)

β̂ξu ≡
1

2
(ǫ̂u

+ + (−1)u+1ǫ̂u
−) −

∑

v

(ǫ̂v
+ + (−1)v ǫ̂v

−)N(v−u) (2.39b)

where the ǫ̂’s are the four gauge parameters of the extended Hamiltonian formulation. I

remind that the ǫ̂’s and hence the β̂’s have arbitrary world-sheet space-time dependence,

thus comprising a true, twisted doubling of the standard world-sheet gravitational gauge

degrees of freedom.
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Using eqs. (2.33b), (2.34a) and (2.38), one then obtains the corresponding transfor-

mation of the extended action

δL̂0 = ∂m

(

∑

w

β̂mwL̂w

)

(2.40a)

L̂w ≡
1

4π

∑

u,v

h̃mn
(w+u+v)∂mx̂n(r)µuGn(r)µ;n(s)ν∂nx̂n(s)νv (2.40b)

δŜ =

∫

dt
∑

w

(β̂ξw(π)L̂w(π) − β̂ξw(0)L̂w(0)) (2.40c)

where L̂w is the natural two-component extension of the action density L̂0. The result

in eq. (2.40c) requires that we study the coordinate-space boundary conditions in further

detail.

The following boundary conditions on the Z2-gravitational structures

M−1
(1)

(0) = N(0)(0) = N(u)(π) = 0 (2.41a)

h̃00
(1)(0) = h̃11

(1)(0) = h̃01
(0)(0) = 0 (2.41b)

β̂ξ0(0) = β̂ξu(π) = βt1(0) = 0 (2.41c)

h̃11
(u)(π) = −v̂u

+(π), h̃01
(u)(π) = 0 (2.41d)

follow from the original Hamiltonian boundary conditions (2.7) on v̂ and ǫ̂, using the

definitions of M,N, h̃ and β in eqs. (2.30), (2.34) and (2.39). These are not quite enough

for the invariance of Ŝ, but these conditions and the boundary conditions (2.29a) on the

twisted coordinates at ξ = 0 suffice to show that

L̂1(0) = 0 → δŜ = 0. (2.42)

As expected from the Hamiltonian formulation, the extended action Ŝ is invariant under

the extended (Z2-twisted) diffeomorphisms of Z2-permutation gravity.

2.6 The twisted coordinate equation of motion

It is instructive to vary the extended action (2.34a) by arbitrary infinitesimal variations δx̂

of the extended coordinates. Then δŜ = 0 gives the coordinate equations of motion:

∂m

(

∑

w

h̃mn
(u+w)∂nx̂n(r)µw

)

= 0 (bulk) (2.43a)

∑

u,v

h̃m1
(u+v)∂mx̂n(r)µuGn(r)µ;n(s)νδx̂n(s)νv = 0 at ξ = 0, π. (2.43b)

The variational boundary conditions (2.43b) at the branes are in fact solved in the form

∑

u,v

h̃m1
(u+v)∂mx̂n(r)µuGn(r)µ;n(s)ν

˙̂x
n(s)νv

= 0 at ξ = 0, π (2.44)
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by the following coordinate-space boundary conditions:

ξ = 0 : ˙̂x
n(r)µ0

= ∂ξx̂
n(r)µ1 = 0 (2.45a)

h̃01
(0) = h̃11

(0) = 0 (2.45b)

ξ = π : ˙̂x
n(r)µu

+ i tan

(

n(r)π

ρ(σ)

)

∑

w

h̃11
(w)∂ξx̂

n(r)µ,u−w = 0 (2.45c)

h̃01
(u) = 0, ū = 0, 1. (2.45d)

These conditions are equivalent to those obtained earlier from phase space. For example

the relation (2.45c) is nothing but the boundary condition (2.29b) written now with eq.

(2.41d) in terms of the extended inverse metric density. The condition (2.44) at π is then

solved by (2.45c) because the identity

∑

n(r),n(s)

∑

u,v,w

h̃11
(u+v+w)h̃

11
(w) tan

(

n(r)π

ρ(σ)

)

∂ξx̂
n(r)µuGn(r)µ;n(s)ν∂ξx̂

n(s)νv = 0 (2.46)

holds by n(r) → −n(r) symmetry. For clarity I have here temporarily reinstated the

implied sums over the spectral indices.

2.7 Identification of the extended metric

Following our discussion of the Polyakov gauge in Subsection 2.4, it is clear that the ex-

tended inverse metric density h̃mn
(u) must be further decomposed to obtain the true extended

metric ĥ
(u)
mn of Z2-permutation gravity. The correct decomposition is

h̃mn
(u) =

∑

w

ĥmn
(u+w)Ĥ

(w), ū = 0, 1, m, n ∈ (0, 1) (2.47a)

∑

w

ĥmp
(u+w)ĥ

(w+v)
pn = δm

n δu−v,0 mod 2 (2.47b)

Ĥ(u) ≡
1

2

(
√

− det(
∑

wĥ
(w)
mn) + (−1)u

√

− det(
∑

w(−1)wĥ
(w)
mn)

)

(2.47c)

where ĥ
(u)
mn and ĥmn

(u) are respectively the extended metric and its inverse. The determinant

in eq. (2.47c) is det(Amn) = A00A11 − (A01)
2. Then it is straightforward to check that the

extended, Z2-twisted diffeomorphisms

δĥ(u)
mn =

∑

w

(β̂pw∂pĥ
(u−w)
mn + ∂mβ̂pwĥ(u−w)

pn + ∂nβ̂pwĥ(u−w)
pn ) (2.48a)

δĥmn
(u) =

∑

w

(β̂pw∂pĥ
mn
(u+w) − ∂pβ̂

mwĥpn
(u+w) − ∂pβ̂

nwĥpm
(u+w)) (2.48b)

δĤ(u) = ∂m

(

∑

w

β̂mwĤ(u−w)

)

, ū = 0, 1 (2.48c)

are consistent and reproduce the extended diffeomorphisms (2.38b) of the extended inverse

metric density. Correspondingly, any object which transforms like Ĥ(u) in (2.48c) will be

called an extended scalar density.
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Note that the extended metric

ĥ(u)
mn =

(

ĥ
(u)
00 ĥ

(u)
01

ĥ
(u)
10 ĥ

(u)
11

)

, û = 0, 1 (2.49)

has six independent degrees of freedom, while the extended inverse metric density has only

four. This tells us that the extended metric contains two Weyl degrees of freedom. Indeed,

I will argue in Subsection 2.9 that an appropriate parametrization of the extended metric

in the (completely gauge-fixed) conformal gauge is

ĥ(u)
mn =

1

2
ηmn(e−φ̂0 + (−1)ue−φ̂1) (2.50)

where {φ̂I , I = 0, 1} are the extended Weyl degrees of freedom and ηmn is the flat world-

sheet metric. As a check on this form, one easily computes

Ĥ(u) =
1

2
(e−φ̂0 + (−1)ue−φ̂1) (2.51a)

ĥmn
(u) =

1

2
ηmn(eφ̂0 + (−1)ueφ̂1) (2.51b)

→ h̃mn
(u) = ηmnδu,0 mod 2 (2.51c)

as required in the conformal gauge.

Identification of the extended metric also allows us to consider the Z2-gravitational

equations of motion, which are obtained by arbitrary variation δĥ
(u)
mn of the final form of

the extended action:

Ŝ =
1

4π

∫

dt

∫ π

0
dξ

∑

u,v,w

ĥmn
(u+v+w)Ĥ

(u)∂mx̂n(r)µvGn(r)µ;n(s)ν∂nx̂n(s)νw. (2.52)

Useful identities in this computation include the following
∑

w

Ĥ−1
(u+w)

Ĥ(w+v) = δu−v,0 mod 2 (2.53a)

δĤ(u) =
1

2

∑

v,w

Ĥ(u+v−w)ĥpq
(v)δĥ

(w)
pq (2.53b)

δĥmn
(u) = −

∑

w,v

ĥmp

(w)ĥ
qn

(v)δĥ
(w+v−u)
pq (2.53c)

where the quantity Ĥ−1 is defined by eq. (2.53a). One then finds the extended Z2-

gravitational stress tensor and equations of motion:

θ̂(u)
mn ≡

∑

xyv

Ĥ−1
(v) ĥ

(x)
mpĥ

(y)
nq

(

δŜ/δĥ(x+y−v−u)
pq

)

(2.54a)

=
1

2

(

L̂(u)
mn −

1

2

∑

v,w

ĥ(v)
mnĥpq

(w)L̂
(w−v+u)
pq

)

(2.54b)

L̂(u)
mn ≡

1

4π

∑

v

∂mx̂n(r)µvGn(r)µ;n(s)ν∂nx̂n(s)ν,u−v (2.54c)

∑

v

ĥmn
(u+v)θ̂

(v)
mn = 0 (2.54d)

θ̂(u)
mn = 0, ū = 0, 1. (2.54e)
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The extended trace conditions in eq. (2.54d) hold independent of the gravitational equa-

tions of motion in (2.54e).

In the conformal gauge, these results reduce to the following Weyl-field-independent

forms

ηmnθ̂(u)
mn = 0 (2.55a)

θ̂(u)
mn =

1

2

(

L̂(u)
mn −

1

2
ηmnηpqL̂(u)

pq

)

= 0, ū = 0, 1 (2.55b)

after using the form (2.50) of the extended metric in the conformal gauge. As expected from

the extended Hamiltonian description, these conditions are nothing but linear combinations

of the classical extended Virasoro constraints of each twisted open-string CFT

θ̂±u (ξ, t) = 0, ū = 0, 1. (2.56)

where the coordinate-space form of {θ̂±u } was given in eq. (2.36).

2.8 Extended nambu action

The quantity L̂
(u)
mn of the previous subsection is constructed entirely from the extended

coordinates and transforms under the Z2-twisted diffeomorphisms like the extended metric:

L̂(u)
mn ≈

∑

v

∂mx̂n(r)µvGn(r)µ;u(s)ν∂nx̂n(s)ν,u−v (2.57a)

δx̂n(r)µu =
∑

v

β̂mv∂mx̂n(r)µ,u−v (2.57b)

δL̂(u)
mn =

∑

v

(β̂pv∂pL̂
(u−v)
mn + ∂mβ̂pvL̂(u−v)

pn + ∂nβ̂pvL̂(u−v)
pm ). (2.57c)

This identifies L
(u)
mn as the natural candidate for the extended form of the induced world-

sheet metric.

We are then led to consider the following extended action of Nambu-type

ˆ̂
S ≈

∫

dt

∫ π

0
dξ

ˆ̂
H

(0)
(2.58a)

ˆ̂
H

(u)

≡
1

2

(
√

− det(
∑

vL̂
(v)
mn) + (−1)u

√

− det(
∑

v(−1)vL̂
(v)
mn)

)

(2.58b)

δ
ˆ̂
H

(0)
= ∂p

(

∑

u

β̂pu ˆ̂
H

(−u)
)

(2.58c)

for each twisted open-string sector of U(1)d/(Z2(w.s.)×H). Eq. (2.58c) tells us in particu-

lar that the quantity
ˆ̂
H

(u)

is an extended scalar density and, using the boundary conditions

(2.41) on the extended diffeomorphism parameters β̂, one finds that this action is invariant

under the extended diffeomorphisms when
ˆ̂
H

(1)

(0, t) = 0.

For brevity, I will not pursue further analysis of these Nambu-like systems here. For

future work, I note however that the four degrees of freedom of the extended diffeomor-

phisms should allow a “light-cone gauge” in which the number of independent (transverse)
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coordinate degrees of freedom is 2d−4. See also my more detailed remarks on the extended

Nambu actions of the permutation orbifolds in Subsection 3.4 and my concluding remarks

in Subsection 4.1 on the corresponding operator theories at critical dimension d = 26.

2.9 Finite invariance transformations

I collect here some preliminary remarks on the finite symmetries of the extended action

(2.52) of Polyakov-type, including the extended Weyl invariance and the extended diffeo-

morphism group of Z2-permutation gravity.

The central step in this discussion is to define what corresponds to the “fields with

twisted boundary conditions” [29, 37] of each sector:

ĥI
mn ≡

∑

u

(−1)Iuĥ(u)
mn, I = 0, 1 (2.59a)

ĥmn
I ≡

∑

u

(−1)Iuĥmn
(u) , ĥmp

I ĥI
pn = δm

n (2.59b)

ĤI ≡
∑

u

(−1)IuĤ(u) =

√

− det(ĥI
mn) (2.59c)

x̂n(r)µI ≡
∑

u

(−1)Iux̂n(r)µu, x̂n(r)µu =
1

2

∑

I

(−1)uI x̂n(r)µI . (2.59d)

All these transformations are invertible, as shown explicitly for the twisted coordinates in

eq. (2.59d).

After some algebra, one finds that the new fields diagonalize the extended action and

its diffeomorphisms

Ŝ =
∑

I

∫

dtI

∫ π

0
dξI ĤI ĥmn

I ∂mx̂n(r)µIGn(r)µ;n(s)ν∂nx̂n(s)νI (2.60a)

δx̂n(r)µI = β̂pI∂px̂
n(r)µI , δĥI

mn = β̂pI∂pĥ
I
mn + ∂mβ̂pI ĥI

pn + ∂nβ̂pI ĥI
pm (2.60b)

βpI ≡
∑

u

(−1)Iuβ̂pu. (2.60c)

where I have relabelled the integration variables t, ξ → tI , ξI separately in each term. In

this form, one sees that the action is invariant — at least locally in the bulk — under the

product of two diffeomorphism groups:

ξm′
I = ξm′

I ({ξp
I}), m = 0, 1, I = 0, 1 (2.61a)

x̂n(r)µI′({ξp′
I }) = x̂n(r)µI({ξp

I}) (2.61b)

ĥI′
mn({ξp′

I }) =
∂ξr

I

∂ξm′
I

∂ξs
I

∂ξn′
I

ĥI
rs({ξ

p
I }). (2.61c)

Up to coupling at the branes then (see below), each of the two metrics ĥI
mn transforms as

an ordinary metric under its group.

In principle, one can use various finite symmetries of the action (2.60a) and invertibility

of the definitions (2.59) to work out the form of these transformations in the original u-

basis. Again up to coupling at the branes, consider the simple example of extended Weyl
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invariance:

ĥI
mn → e−σ̂I ĥI

mn : (2.62a)

ĥ(u)
mn →

1

2

∑

w

(e−σ̂0 + (−1)u+we−σ̂1)ĥ(w)
mn (2.62b)

h̃mn
(u) → h̃mn

(u) , Ŝ → Ŝ. (2.62c)

Similarly, the following steps

hI
mn = e−φ̂I ηmn : (2.63a)

ĥ(u)
mn =

1

2
ηmn(e−φ̂0 + (−1)ue−φ̂1) (2.63b)

give the parametrization (2.51) quoted above for the extended metric in the conformal

gauge.

I leave for another time and place the precise form of the finite Z2-diffeomorphisms

in the u-basis. For this application in particular however, I emphasize that the decoupled

form (2.60) of the bulk Lagrange density in the I-basis is quite deceptive, the complexity

of the theory — and in particular its fractional modeing — being hidden in the unfamiliar

boundary conditions

∑

I

(−1)I h̃00
I (0) =

∑

I

(−1)I h̃11
I (0) =

∑

I

h̃01
I (0) = 0 (2.64a)

∑

I

˙̂x
n(r)µI

(0) =
∑

I

(−1)I∂ξx̂
n(r)µI(0) = 0 (2.64b)

h̃01
I (π) = 0 (2.64c)

˙̂x
n(r)µI

(π) + i tan

(

n(r)π

ρ(σ)

)

h̃11
I (π)∂ξx̂

n(r)µI(π) = 0 (2.64d)

which couple the I-basis fields at the branes, even in the conformal gauge.

I finally mention that the basis change (2.59d) of the extended coordinates allows the

extended action (2.58) of Nambu-type to be similarly expressed in terms of two ordinary

untwisted Nambu actions [65], but the coupled coordinate boundary conditions at the

branes are more intricate in this case.

3. General permutation gravity in the permutation orbifolds

3.1 Extended Polyakov hamiltonian

The (closed-string) WZW permutation orbifolds [27, 29, 31–33, 35, 36]

Ag(H)

H
, g = ⊕K−1

I=0 gI , gI ≃ g, H = H(perm) ⊂ Aut(g) (3.1)

have now been studied in considerable detail, where H(perm) is any permutation group

which acts on K copies of g in g. We know in particular that the sectors {σ} of these

orbifolds are labelled by the conjugacy classes of H(perm), and each sector lives at central
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charge ĉ = Kcg where cg is the central charge of the affine-Sugawara construction [2, 3, 4,

7, 11] on g. Moreover, each twisted sector (σ 6= 0) is governed by the following left-mover

orbifold Virasoro algebra [35]

[

L̂̂j

(

m+
̂

fj(σ)

)

, L̂
l̂l

(

n+
l̂

fl(σ)

)]

= δjl

{(

m − n +
̂ − l̂

fj(σ)

)

L̂
̂+l̂,j

(

m + n +
̂ + l̂

fj(σ)

)

(3.2a)

+
cgfj(σ)

12

(

m +
̂

fj(σ)

)((

m +
̂

fj(σ)

)2

− 1

)

δ
m+u+ ̂+l̂

fj(σ)
,0

¯̂,
¯̂
l = 0, 1, . . . , fj(σ) − 1,

∑

j

fj(σ) = K (3.2b)

as well as a commuting set of (rectified) right-mover copies { ˆ̄L
#

̂j}. The physical Virasoro

generators of each twisted sector

L̂σ(m) ≡
∑

j

L̂0j(m), ˆ̄Lσ(m) ≡
∑

j

ˆ̄L
#

0j(m) (3.3a)

ĉ = ˆ̄c = c = Kcg (3.3b)

are twisted affine-Sugawara constructions with the same central charges (3.3b) as the un-

twisted sector σ = 0.

The extended Virasoro algebra in eq. (3.2) is given in the standard [33–35, 37] cycle

notation for the corresponding representative element hσ ∈ H(perm), where j indexes the

disjoint cycles of size fj(σ) and ĵ indexes the position in the jth cycle. As examples, one

has

Zλ : K = λ, fj(σ) = ρ(σ), ˆ̄ = 0, . . . , ρ(σ) − 1, (3.4a)

j = 0, . . . ,
1

ρ(σ)
− 1, σ = 0, . . . , ρ(σ) − 1

Zλ, λ prime : ρ(σ) = λ, ˆ̄ = 0, . . . , λ − 1, (3.4b)

j = 0, σ = 1, . . . , λ − 1

SN : K = N, fj(σ) = σj , σj+1 ≤ σj , (3.4c)

j = 0, . . . , n(~σ) − 1,

n(~σ)
∑

j=0

σj = N.

For the special case H = Z2, the extended Virasoro algebra (3.2) reduces to the order-two

orbifold Virasoro algebra (2.2a) studied above for the orientation orbifolds. More generally,

the extended algebra (3.2) is semisimple, with one component for each cycle j in hσ ∈ H.

For the classical development below, we will need the left- and right-mover extended
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stress tensors of each twisted sector [35]

θ̂̂j(ξ, t) =
1

2π

∑

m∈Z

L̂̂j

(

m +
̂

fj(σ)

)

e
−i

(

m+
̂

fj(σ)

)

(t+ξ)
(3.5a)

ˆ̄θ̂j(ξ, t) =
1

2π

∑

m∈Z

ˆ̄L
#

−̂,j(m − ̂
fj(σ))e

−i

(

m− ̂
fj (σ)

(t−ξ)

)

(3.5b)

θ̂̂j(ξ + 2π, t) = e
−2πi

̂
fj(σ) θ̂̂j(ξ, t),

ˆ̄θ̂j(ξ + 2π, t) = e
−2πi

̂
fj (σ) ˆ̄θ̂j(ξ, t) (3.5c)

{θ̂̂j(ξ, t), θ̂l̂l
(η, t)} = iδjl(∂ξ − ∂η)(θ̂̂+l̂

(η)δ ̂
fj (σ)

(ξ − η)) (3.5d)

{ˆ̄θ̂j(ξ, t),
ˆ̄θ
l̂l
(η, t)} = −iδjl(∂ξ − ∂η)(

ˆ̄θ
̂+l̂

(η)δ ̂
fj (σ)

(ξ − η)) (3.5e)

{θ̂̂j(ξ, t),
ˆ̄θ
l̂l
(η, t)} = 0 (3.5f)

δ ̂
fj(σ)

(ξ − η) =
1

2π

∑

m∈Z

e
−i

(

m+ ̂
fj (σ)

)

(ξ−η)
= δ

− ̂
fj (σ)

(η − ξ). (3.5g)

whose properties follow again from the classical analogue of eq. (3.2b). The barred brackets

here follow from the unbarred because ˆ̄θ−̂,j has the same brackets as θ̂̂j with ξ → −ξ.

Then following the development above for the orientation orbifolds, I define the

(monodromy-invariant) extended Hamiltonian and gauge generator for each sector σ of

each permutation orbifold

Ĥσ ≡

∫ π

0
dξ

∑

j

fj(σ)−1
∑

̂=0

(v̂̂j θ̂̂j + ˆ̄v
̂j ˆ̄θ̂j) (3.6a)

≡

∫ 2π

0
dξ(v̂̂j θ̂̂j + ˆ̄v

̂j ˆ̄θ̂j) (3.6b)

Ĝσ ≡

∫ 2π

0
dξ(ǫ̂̂j θ̂̂j + ˆ̄ǫ

̂j ˆ̄θ̂j) (3.6c)

Ô̂j(ξ + 2π) = e
2πi

̂
fj(σ) Ô̂j(ξ), Ô = {v̂, ˆ̄v, ǫ̂, ˆ̄ǫ} (3.6d)

˙̂
A ≡ i{Ĥσ , Â}, δÂ ≡ i{Ĝσ , Â} (3.6e)

δv̂̂j ≡

fj(σ)−1
∑

l̂=0

ǫ̂̂−l̂,j
↔

∂ ξ v̂l̂j , δˆ̄v
̂j
≡

fj(σ)−1
∑

l̂=0

ˆ̄v
̂−l̂,j ↔

∂ ξ ˆ̄ǫ
l̂j

(3.6f)

where v̂, ˆ̄v are the multipliers and ǫ̂, ˆ̄ǫ are the (time-independent) extended gauge parame-

ters. This gives in particular the properties of the gauge-variant stress tensors and multi-
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pliers

δθ̂̂j =

fj(σ)−1
∑

l̂=0

[

∂ξ(θ̂̂+l̂,j
ǫ̂l̂j) + θ̂

̂+l̂,j
∂ξ ǫ̂

l̂j
]

(3.7a)

δ ˆ̄θ̂j = −

fj(σ)−1
∑

l̂=0

[

∂ξ(
ˆ̄θ
̂+l̂,j

ˆ̄ǫ
l̂j
) + ˆ̄θ

̂+l̂,j
∂ξ ˆ̄ǫ

l̂j
]

(3.7b)

˙̂
θ̂j =

fj(σ)−1
∑

l̂=0

[

∂ξ(θ̂̂+l̂,j
v̂l̂j) + θ̂

̂+l̂,j
∂ξ v̂

l̂j
]

(3.7c)

˙̄̂
θ̂j = −

fj(σ)−1
∑

l̂=0

[

∂ξ(
ˆ̄θ
̂+l̂

ˆ̄v
l̂j
) + ˆ̄θ

̂+l̂,j
∂ξ ˆ̄v

l̂j
]

(3.7d)

˙̂v
̂j

= −

fj(σ)−1
∑

l̂=0

v̂̂−l̂,j
↔

∂ ξ v̂l̂j , ˙̄̂v
̂j

=

fj(σ)−1
∑

l̂=0

ˆ̄v
̂−l̂,j ↔

∂ ξ ˆ̄v
l̂j
. (3.7e)

where (3.7e) follows from (3.7c), (3.7d) and the requirement that
˙̂

Hσ = 0. Then it is easily

checked that the extended Hamiltonian is gauge-invariant δĤσ = 0 under the extended

gauge group of the orbifold Virasoro algebra (3.2a). Note also that the monodromies,

dynamics and gauge transformations in eqs. (3.6), (3.7) do not mix the cycles {j}.

The corresponding multiplier equations of motion are the extended Virasoro (Polyakov)

constraints

θ̂̂j = ˆ̄θ̂j = 0, ¯̂ = 0, 1, . . . , fj(σ) − 1,
∑

j

fj(σ) = K (3.8a)

↔ {L̂̂j

(

m +
̂

fj(σ)

)

= ˆ̄L
#

̂j

(

m +
̂

fj(σ)

)

= 0} (3.8b)

so we will not be surprised to find these constraints again in the action formulation below.

I emphasize that the number of extended Virasoro constraints (which is also the number

of extended gauge degrees of freedom) is

N∗ = 2
∑

j

fj(σ) = 2K. (3.9)

This counting holds in all sectors of each permutation orbifold, including the untwisted

sector σ = 0 where K is the number of copies of g in g.

Among possible Hamiltonian gauge choices, I mention the following: In the

(completely-fixed) conformal gauge, the extended Hamiltonian reduces to the CFT Hamil-

tonian of each sector

v̂̂j = ˆ̄v
̂j

= δ̂,0 mod fj(σ) (3.10a)

Ĥσ =

∫ 2π

0
dξ

∑

j

(θ̂0j + ˆ̄θ0j) = L̂σ(0) + ˆ̄Lσ(0) (3.10b)
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where the extended stress tensors of each twisted closed-string CFT are given in eq. (3.5).

Other (partially-fixed) gauges of interest include the extended Polyakov gauge

v̂̂j = v̂jδ̂,0 mod fj(σ), ˆ̄v
̂j

= ˆ̄v
j
δ̂,0 mod fj(σ) (3.11)

which corresponds in fact to choosing a distinct (ordinary) Polyakov metric for each disjoint

cycle j, and the Polyakov gauge

v̂̂j = v̂δ̂,0 mod fj(σ), ˆ̄v
̂j

= ˆ̄vδ̂,0 mod fj(σ) (3.12a)

Ĥσ =

∫ 2π

0
dξ(v̂θ̂ + ˆ̄v ˆ̄θ) (3.12b)

θ̂ ≡
∑

j

θ̂0j ,
ˆ̄θ ≡

∑

j

ˆ̄θ0j (3.12c)

where θ̂ and ˆ̄θ are the physical stress tensors (see eq. (3.3)) of sector σ. This is the ordinary

Polyakov Hamiltonian of the sector, in which the same Polyakov metric is chosen for all

the cycles.

To go further, we need the explicit phase-space formulation of the extended stress

tensors in each twisted sector of the permutation orbifolds.6 This data is given for the WZW

permutation orbifolds in refs. [35,37], but I limit the discussion here to the (B = B̂ = 0)

free-bosonic permutation orbifolds

U(1)Kd

H(perm)
, U(1)Kd ≡ U(1)d × U(1)d × . . . (K times) (3.13)

all of whose sectors have central charge ĉ = c = Kd.

The free-bosonic permutation orbifolds have also been worked out in refs. [33, 35, 37]

as a special case on abelian g, and we may read off from these references (at k = 1 for

simplicity):

θ̂̂j =
1

4π

Gab

fj(σ)

fj(σ)−1
∑

l̂=0

Ĵ
l̂aj

Ĵ
̂−l̂,bj

(3.14a)

ˆ̄θ̂j =
1

4π

Gab

fj(σ)

fj(σ)−1
∑

l̂=0

ˆ̄J
l̂aj

Ĵ
̂−l̂,bj

(3.14b)

Ĵ̂aj(ξ + 2π) = e
−2πi

̂
fj (σ) Ĵ̂aj(ξ),

ˆ̄J ̂aj(ξ + 2π) = e
−2πi

̂
fj(σ) ˆ̄J ̂aj(ξ) (3.14c)

{Ĵ̂aj(ξ), Ĵl̂bl
(η)} = −{ ˆ̄J ̂aj(ξ),

ˆ̄J
l̂bl

(η)} (3.14d)

= δjlδ̂+l̂,0 mod fj(σ)fj(σ)Gab∂ξδ ̂
fj (σ)

(ξ − η) (3.14e)

6Although WZW was used as an illustration above, the orbifold Virasoro algebra (3.2a) and the extended

Hamiltonian system (3.6) hold for general permutation orbifolds, including sigma-model permutation orb-

ifolds (see ref. [37]).
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Ĵ̂aj = 2πp̂̂aj +
fj(σ)

2
Gab∂ξx̂

−̂,bj (3.14f)

ˆ̄J ̂aj = −2πp̂̂aj +
fj(σ)

2
Gab∂ξx̂

−̂,bj (3.14g)

x̂̂aj(ξ + 2π) = e
2πi ̂

fj (σ) x̂̂aj , p̂̂aj(ξ + 2π) = e
−2πi ̂

fj (σ) p̂̂aj(ξ) (3.14h)

{p̂jaj(ξ), x̂
l̂bl(η)} = −iδl

jδ
b
aδ̂−l̂,0 mod fj(σ)δ ̂

fj (σ)
(ξ − η). (3.14i)

Here {x̂} and {p̂} are the twisted coordinates and momenta (there are Kd of each) in

twisted sector σ of each free-bosonic permutation orbifold, and each twisted current algebra

in (3.14d,e) is called an abelian orbifold affine algebra [27].

In further detail, the quantity Gab (and its inverse Gab) in (3.14) is the untwisted

tangent-space metric for each closed string copy U(1)d in the symmetric sector U(1)Kd,

where the untwisted current algebras, permutations and H-eigenvalue problem read:

[JaI(m), JbJ (n)] = [J̄aI (m), J̄bJ (n)] = mδIJGabδm+n,0 (3.15a)

JaI(m)′ = ω(σ)I
JJaJ (m), ˆ̄JaI(m)′ = ω(σ)I

J J̄aJ (m) (3.15b)

ω(σ) ∈ H(perm) (3.15c)

ω(σ)I
JU †(σ)J

̂j = U †(σ)I
̂je

−2πi
̂

fj (σ) , (3.15d)

¯̂ = 0, . . . , fj(σ) − 1,
∑

j

fj(σ) = K (3.15e)

m,n ∈ Z, a, b = 1, . . . , d, I, J = 0, . . . ,K − 1. (3.15f)

This is the same Gab introduced for the untwisted open string in section 2, and the same

value

U(1)26K

H(perm)
: Gab = Gab =

(

−1 0

0 11

)

, a, b = 0, 1, . . . , 25 (3.16a)

ĉ = c = 26K (3.16b)

can be chosen at any point in the discussion below to obtain the results for the critical

permutation orbifolds in Minkowski space.

It is now straightforward to work out the Hamiltonian equation of motion of the twisted

coordinates

˙̂x
̂aj

=
Gab

fj(σ)

fj(σ)−1
∑

l̂=0

(

v̂l̂j Ĵ
l̂−̂,bj

− ˆ̄v
l̂j ˆ̄J

l̂−̂,bj

)

(3.17)

and use the phase-space realization (3.14f,g) of the currents to construct the extended

action

Ŝσ =

∫

dt

∫ 2π

0
dξ

∑

j,̂

(

˙̂x
̂aj

p̂̂aj − v̂̂j θ̂̂j − ˆ̄v
̂j ˆ̄θ̂j

)

(3.18)

in each sector σ of all the permutation orbifolds. Again following refs. [63, 61], we know

that each extended action is invariant δŜσ = 0 under the following full time-dependent
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gauge transformations

δv̂̂j = ˙̂ǫ
̂j

+

fj(σ)−1
∑

l̂=0

ǫ̂̂−l̂,j
↔

∂ ξ v̂l̂j (3.19a)

δˆ̄v
̂j

= ˙̄̂ǫ
̂j

+

fj(σ)−1
∑

l̂=0

ˆ̄v
̂−l̂,j ↔

∂ ξ ˆ̄ǫ
l̂j

(3.19b)

and δÂ in eq. (3.6e) for the matter fields. These transformations define the phase-space

form of the extended, twisted diffeomorphisms of general permutation gravity.

3.2 Extended Polyakov actions

In order to keep track of the branes, I followed the transition to coordinate space carefully

for the open-string sectors of the orientation orbifolds. Such detail is unnecessary for the

closed-string sectors of the permutation orbifolds because boundary conditions are now

replaced by monodromies, and these are simple to track for all fields. Indeed, consulting

eqs. (3.5c), (3.6d) and (3.14h), we see a + or − phase under ξ → ξ + 2π for each up or

down index ̂ respectively.

I therefore present only the final coordinate-space form of Ŝσ in eq. (3.18), which I

will call the general extended action of Polyakov-type:

L̂σ
̂j ≡

1

8π

fj(σ)−1
∑

l̂,m̂=0

h̃mn

(̂+l̂+m̂)j
∂mx̂l̂aj(fj(σ)Gab)∂nx̂m̂bj (3.20a)

Ŝσ =

∫

dt

∫ 2π

0
dξ

∑

j

L̂σ
0j (3.20b)

=
1

8π

∫

dt

∫ 2π

0
dξ

∑

jl̂m̂

h̃mn

(l̂+m̂)j
∂mx̂l̂ajfj(σ)Gab∂nx̂m̂bj (3.20c)

x̂̂aj(ξ + 2π, t) = e
2πi

̂
fj(σ) x̂̂aj(ξ, t) (3.20d)

h̃mn
(̂)j(ξ + 2π, t) = e

−2πi ̂
fj (σ) h̃mn

(̂)j(ξ, t) (3.20e)

L̂σ
̂j(ξ + 2π, t) = e

−2πi
̂

fj (σ) L̂σ
̂j(ξ, t). (3.20f)

For each sector σ of each permutation orbifold the general extended action density is

cycle-separable and monodromy-invariant. The general permutation-twisted gravitational

structure

h̃mn
(̂)j(ξ, t) = h̃nm

(̂)j(ξ, t) (3.21a)

m,n ∈ (0, 1), ¯̂ = 0, . . . , fj(σ) − 1,
∑

j

fj(σ) = K (3.21b)

collects all dependence on the phase-space multipliers {v̂, ˆ̄v}, and hence possesses N∗ = 2K

independent degrees of freedom. I will again call this structure the inverse extended metric
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density of general permutation gravity, though we shall see momentarily that it is in fact a

set of inverse extended metric densities, one for each cycle j of each representative element

hσ ∈ H(perm).

The coordinate-space form of the infinitesimal twisted diffeomorphisms (3.6e), (3.19a)

of general permutation gravity is

δx̂̂aj =

fj(σ)−1
∑

l̂=0

β̂pl̂j∂px̂
̂−l̂,aj (3.22a)

β̂m̂j(ξ + 2π, t) = e
2πi ̂

fj (σ) β̂m̂j(ξ, t) (3.22b)

δh̃mn
(̂)j =

fj(σ)−1
∑

l̂=0

(

∂p(β̂
pl̂j h̃mn

(̂+l̂)j
) − (∂pβ̂

ml̂j)h̃pn

(̂+l̂)j
− (∂pβ̂

nl̂j h̃pm

(̂+l̂)j
)
)

(3.22c)

δL̂σ
0j = ∂p





fj(σ)−1
∑

ĵ=0

β̂p̂jL̂σ
̂j



 (3.22d)

where {β̂} are the N∗ = 2K independent coordinate-space extended diffeomorphism pa-

rameters. It follows that δŜσ = 0, so that the general extended action has the expected

invariance under the extended diffeomorphisms. Moreover, we see that the extended diffeo-

morphisms do not mix the different cycle-components {j} of the extended inverse metric

density.

I close this subsection with the twisted-coordinate equations of motion

∂m





fj(σ)−1
∑

l̂=0

h̃mn

(̂+l̂)j
∂nx̂l̂aj



 = 0 (3.23a)

¯̂ = 0, 1, . . . , fj(σ) − 1,
∑

j

fj(σ) = K, a = 1, . . . , d (3.23b)

which follow by arbitrary variation δx̂ of the general extended action, and two simple checks

of our results up to this point: First, for the single twisted sector of the Z2-permutation

orbifold, one sees that our results reduce locally to the same Z2-permutation gravity found

in the (open-string) orientation orbifold sectors. In particular, the extended inverse metric

density in this case takes the form h̃mn
(̂)0,

¯̂ = 0, 1 because the non-trivial element of Z2 is

a single cycle. This makes sense because the local gravitational structure is governed by

an order-two orbifold Virasoro algebra in both cases. Second, the general extended action

(3.20) reduces in the case of the (completely-fixed) conformal gauge (3.10) to the known

conformal-field-theoretic action of each sector of the free-bosonic permutation orbifolds [37]

h̃mn
(̂)j = ηmnδ̂,0 mod fj(σ), η =

(

1 0

0 −1

)

(3.24a)

Ŝσ =
1

8π

∫

dt

∫ 2π

0
dξηmn

∑

j

fj(σ)

fj(σ)−1
∑

̂=0

∂mx̂̂ajGab∂nx̂−̂,bj (3.24b)
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where η is the flat-world sheet metric. The coordinate-monodromies given in eq. (3.20d) are

of course independent of gauge choice, while the monodromy (3.20e) of the inverse extended

metric density is now trivial because its conformal-gauge support is only at ¯̂ = 0.

3.3 The twisted permutation gravities

I turn next to the identification of the extended world-sheet metric of each twisted permu-

tation gravity:

ĥ(̂)j
mn = ĥ(̂)j

nm , ¯̂ = 0, . . . , fj(σ) − 1,
∑

j

fj(σ) = K, m,n ∈ (0, 1). (3.25)

Generalizing our discussion of Z2-permutation gravity in section 2, the extended metric

(and its inverse ĥmn
(̂)j) can be identified by the following decomposition of the extended

inverse metric density:

h̃mn
(̂)j =

fj(σ)−1
∑

l̂=0

ĥmn

(̂+l̂)
Ĥ(l̂)j , ĥmn

(̂)j = ĥnm
(̂)j (3.26a)

fj(σ)−1
∑

k̂=0

ĥmp

(̂+k̂)j
ĥ(k̂+l̂)j

pn = δm
n δ

̂−l̂,0 mod fj(σ), ∀ j (3.26b)

Ĥ(̂)j =
1

fj(σ)

fj(σ)−1
∑

J=0

e
−2πi

̂J
fj(σ)



− det





fj(σ)−1
∑

l̂=0

e
2πi Jl̂

fj (σ) ĥ(l̂)j
mn









1
2

.(3.26c)

As above, the determinant in eq. (3.26c) operates only on the 2×2 world-sheet indices m,n.

It is then straightforward to check that the following permutation-twisted diffeomorphisms

and monodromies

δĥ(̂)j
mn =

fj(σ)−1
∑

l̂=0

(

β̂pl̂j∂pĥ
(̂−l̂)j
mn + ∂mβ̂pl̂jĥ(̂−l̂)j

pn + ∂nβ̂pl̂j ĥ(̂−l̂)j
pm

)

(3.27a)

δĥmn
(̂)j =

fj(σ)−1
∑

l̂=0

(

β̂pl̂j∂pĥ
mn

(̂+l̂)j
− ∂pβ̂

ml̂jĥpn

(̂+l̂)j
− ∂pβ̂

nl̂j ĥpm

(̂+l̂)j

)

(3.27b)

δĤ(̂)j = ∂p





fj(σ)−1
∑

l̂=0

βpl̂jĤ(̂−l̂)j



 (3.27c)

ĥ(̂)j
mn (ξ + 2π, t) = e

2πi
̂

fj(σ) ĥ(̂)j
mn (ξ, t) (3.27d)

ĥmn
(̂)j(ξ + 2π, t) = e

−2πi ̂
fj(σ) ĥmn

(̂)j(ξ, t) (3.27e)

Ĥ(̂)j(ξ + 2π, t) = e
2πi

̂
fj(σ) Ĥ(̂)j(ξ, t) (3.27f)

are consistent and reproduce the corresponding transformations in (3.20e), (3.22c) of the

extended inverse metric density. We may take the transformations (3.27c), (3.27f) as

defining a set of extended scalar densities, one for each cycle j of hσ, although only the ¯̂ = 0
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component of each has trivial monodromy. For the case H(perm) = Z2 the decomposition

(3.26) and the twisted diffeomorphisms in (3.27) reduce to the Z2-gravitational results of

Subsection 2.7.

More generally, these results describe a distinct, twisted permutation gravity in each

twisted sector of each permutation orbifold. Correspondingly, the permutation gravities

are in 1−1 correspondence with the conjugacy classes of any permutation group H(perm).

Although I have worked out the invariant actions only for the free-bosonic orbifolds

Ŝσ =
1

8π

∫

dt

∫ 2π

0
dξ

∑

j

fj(σ)−1
∑

̂,l̂,k̂=0

ĥmn

(̂+l̂+k̂)j
Ĥ(̂)j∂mx̂l̂ajfj(σ)Gab∂nx̂k̂bj (3.28)

the extended Hamiltonian formulation of Subsection 3.1 tells us that the same P -

gravitational structures will also appear in the extended actions of permutation orbifolds

of general WZW and sigma models.

Note that the extended world-sheet metric ĥ
(̂)j
mn of each twisted sector σ has

N ′
∗ = 3K (3.29)

independent components while there are only N∗ = 2K extended gauge degrees of freedom

in each permutation gravity. Then the extended metric includes

N ′
∗ − N∗ = K (3.30)

twisted Weyl degrees of freedom, which cannot be gauged away and which do not appear

in the extended inverse metric density h̃mn
(̂)j . This counting holds in all sectors of the

permutation orbifolds, including the untwisted sector σ = 0 where we have K copies of the

ordinary Polyakov metric in the world-sheet description of U(1)Kd. Indeed, I will argue in

the following subsection that the extended metric of twisted sector σ can be parametrized

in the (completely-fixed) conformal gauge as

ĥ(̂)j
mn = ηmnĤ(̂)j (3.31a)

Ĥ(̂)j =
1

fj(σ)

fj(σ)−1
∑

J=0

exp



−2πi
̂J

fj(σ)
−

fj(σ)−1
∑

l̂=0

e
−2πi Jl̂

fj(σ) φ̂(̂)j



 (3.31b)

ĥmn
(̂)j = ηmn 1

fj(σ)

fj(σ)−1
∑

J=0

exp



2πi
̂J

fj(σ)
+

fj(σ)−1
∑

l̂=0

e
−2πi Jl̂

fj(σ) φ̂(̂)j



 (3.31c)

h̃mn
(̂)j = ηmnδ̂,0 mod fj(σ) (3.31d)

φ̂(̂)j(ξ + 2π, t) = e
−2πi ̂

fj(σ) φ̂(̂)j(ξ, t), (3.31e)

¯̂ = 0, . . . , fj(σ) − 1,
∑

j

fj(σ) = K

where η is the flat world-sheet metric and {φ̂} are the K twisted Weyl fields.
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As a final topic in this subsection, I consider the P -gravitational equations of motion,

which are obtained by arbitrary variation δĥ
(̂)j
mn of the extended metric in the extended

action (3.28). After some algebra, the result is

θ̂̂j
mn ≡

1

2



L̂̂j
mn −

1

2

fj(σ)−1
∑

l̂,m̂=0

ĥ(l̂)j
mn ĥpq

(m̂)jL̂
m̂−l̂−̂,j
pq



 (3.32a)

L̂̂j
mn ≡

1

8π

fj(σ)−1
∑

l̂=0

∂mx̂l̂ajfj(σ)Gab∂nx̂̂−l̂,bj (3.32b)

fj(σ)−1
∑

l̂=0

ĥmn

(̂+l̂)j
θ̂ l̂j
mn = 0 (3.32c)

θ̂̂j
mn = 0 (3.32d)

where θ̂̂j
mn is the extended P -gravitational stress tensor. The extended tracelessness condi-

tions in (3.32c) follow from (3.32a), and are independent of the equations of motion in eq.

(3.32d). Not surprisingly, the P -gravitational equations of motion reduce in the conformal

gauge (3.31) to the following 2K extended Polyakov constraints:

θ̂̂j =
1

4π

Gab

fj(σ)

fj(σ)−1
∑

l̂=0

Ĵ
l̂aj

Ĵ
̂−l̂,bj

= 0 (3.33a)

ˆ̄θ̂j =
1

4π

Gab

fj(σ)

fj(σ)−1
∑

l̂=0

ˆ̄J
l̂aj

ˆ̄J
̂−l̂,bj

= 0 (3.33b)

Ĵ̂aj =
fj(σ)

2
Gab∂+x̂−̂,bj, ˆ̄J ̂aj = −

fj(σ)

2
Gab∂−x̂−̂,bj (3.33c)

∂−Ĵ̂aj = ∂+
ˆ̄J ̂aj = ∂−θ̂̂j = ∂+

ˆ̄θ̂j = 0 (3.33d)

¯̂ = 0, . . . , fj(σ) − 1,
∑

j

fj(σ) = K, a, b = 1, . . . , d. (3.33e)

These constraints are independent of the Weyl degrees of freedom, and are indeed nothing

but the coordinate-space form of the extended Virasoro constraints (3.8) of the Hamilto-

nian formulation. I remind that these 2K constraints include the two ordinary Polyakov

constraints
∑

j

θ̂0j =
∑

j

ˆ̄θ0j = 0 (3.34)

which involve only the total left- and right-mover physical stress tensors of each orbifold

sector.

3.4 Extended nambu actions

For each twisted sector σ of the permutation orbifolds U(1)Kd/H(perm), I also mention
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the extended action of Nambu-type:

ˆ̂
Sσ ≈

∫

dt

∫ 2π

0
dξ

∑

j

ˆ̂
H

(0)j

(3.35a)

ˆ̂
H

(̂)j

≡
1

fj(σ)

fj(σ)−1
∑

J=0

e
−2πi ̂J

fj(σ)



− det





fj(σ)−1
∑

l̂=0

e
2πi Jl̂

fj(σ) L̂l̂j
mn









1
2

(3.35b)

L̂̂j
mn =

1

8π

fj(σ)−1
∑

l̂=0

∂mx̂l̂ajfj(σ)Gab∂nx̂̂−l̂,bj . (3.35c)

These systems are constructed using the quantity L̂̂j
mn in eq. (3.35c) as the induced,

extended world-sheet metric, which transforms like the extended Polyakov metric:

L̂̂j
mn(ξ + 2π, t) = e

2πi ̂
fj (σ) L̂̂j

mn(ξ, t) (3.36a)

δL̂̂j
mn =

fj(σ)−1
∑

l̂=0

(

β̂pl̂j∂pL̂
̂−l̂,j
mn + ∂mβ̂pl̂jL̂̂−l̂,j

pn + ∂nβ̂pl̂jL̂̂−l̂,j
pm

)

. (3.36b)

The transformations (3.36) follow from the monodromies (3.20c) and extended diffeomor-

phisms (3.22a) of the extended coordinates {x̂̂aj , a = 1, . . . , d}, and imply in turn that the

quantity
ˆ̂
H

(̂)j

transforms (like Ĥ(̂)j in (3.27)) as a set of extended scalar densities.

In particular, one finds that

ˆ̂
H

(0)j

(ξ + 2π, t) =
ˆ̂
H

(0)j

(ξ, t),
∑

j

fj(σ) = K (3.37a)

δ
ˆ̂
H

(0)j

= ∂p





fj(σ)−1
∑

ĵ=0

β̂p̂j ˆ̂
H

(0)j



 (3.37b)

δ
ˆ̂
Sσ = 0 (3.37c)

so the extended actions of Nambu-type are properly invariant under monodromy and the

general permutation-twisted diffeomorphisms.

In Minkowski target space G =
(

−1 0
0 11

)

, the N∗ = 2K degrees of freedom of the

extended diffeomorphisms should allow us to follow ref. [66] in choosing the following K

gauge conditions as an extended light-cone gauge

x̂̂,+,j = 0, ¯̂ = 0, . . . , fj(σ) − 1,
∑

j

fj(σ) = K (3.38)

and show that the K longitudinal coordinates x̂̂,−,j = x̂j,−,j(x̂⊥) are dependent on the re-

maining K(d−2) transverse twisted coordinates {x̂̂αj, α = 1, . . . , d−2}. Correspondingly,

the extended light-cone gauge for the Nambu-like action (2.58) of the orientation-orbifold

sectors should give a description of the twisted open strings in terms of 2(d− 2) transverse

degrees of freedom.

Subsection 4.1 includes some remarks on the corresponding operator theories in critical

dimension d = 26.
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3.5 A complementary derivation

Following our discussion in subsection 2.9 we are led to consider, in each sector of each

permutation orbifold, a corresponding change of variable to the J-basis fields ÂJ , ÂJ with

twisted boundary conditions [29, 37]:

x̂̂aj =
1

fj(σ)

fj(σ)−1
∑

J=0

e
−2πi

̂J
fj(σ) x̂Jaj (3.39a)

ĥ(̂)j
mn =

1

fj(σ)

fj(σ)−1
∑

J=0

e
−2πi

̂J
fj(σ) ĥJj

mn (3.39b)

ĥmn
(̂)j =

1

fj(σ)

fj(σ)−1
∑

J=0

e
2πi ̂J

fj(σ) ĥmn
Jj (3.39c)

Ĥ(̂)j =
1

fj(σ)

fj(σ)−1
∑

J=0

e
−2πi ̂J

fj(σ)

√

− det(ĥJj
mn) (3.39d)

ĥJj
mpĥ

pn
Jj = δn

m, J = 0, . . . , fj(σ) − 1,
∑

j

fj(σ) = K. (3.39e)

Here J is Fourier-conjugate to ̂, and the new fields are periodic J → J ± fj(σ), but the

monodromies of the new fields are not diagonal

ÂJj =

fj(σ)−1
∑

̂=0

e
2πi J̂

fj(σ) Â(̂)j , ÂJj =

fj(σ)−1
∑

̂=0

e
−2πi J̂

fj(σ) Â(̂)j (3.40a)

ÂJj(ξ + 2π, t) = ÂJ+1,j(ξ, t), ÂJj(ξ + 2π, t) = ÂJ+1,j(ξ, t). (3.40b)

After some algebra, one finds that the general extended action (3.28) of Polyakov-type

takes the following simple form in the J-basis

Ŝσ =

∫

dt

∫ 2π

0
dξ

1

8π

∑

j

fj(σ)−1
∑

̂,k̂,l̂=0

Ĥ(̂)j ĥmn

(̂+k̂+l̂)j
∂mx̂k̂ajfj(σ)Gab∂nx̂l̂bj (3.41a)

=

∫

dt

∫ 2π

0
dξ

1

8π

∑

j

fj(σ)−1
∑

J=0

√

− det(ĥJj) ĥmn
Jj ∂mx̂JajGab∂nx̂Jbj (3.41b)

for each sector σ of each permutation orbifold. Because of the sum on J , the action

density in eq. (3.41b) is still manifestly monodromy-invariant under the non-diagonal

monodromies of the J-basis fields. Moreover — except for global coupling via the non-

diagonal monodromies — the form (3.41b) is a sum of K ordinary untwisted Polyakov

actions [64] for the original closed-string CFT U(1)Kd, written now in the cycle basis of

each representative element hσ ∈ H(perm).

This result allows us to understand the general extended action (3.41a) of Polyakov-

type as nothing but the form obtained by monodromy- decomposition of the J-basis fields

ÂJj , ÂJj , an essentially standard application of the principle of local isomorphisms [27, 29,
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31, 32, 35, 37]. Using only eq. (3.39a) for the twisted coordinates {x̂̂aj}, the extended

actions (3.35) of Nambu-type can similarly be understood as the monodromy-resolved form

of a sum of K ordinary untwisted Nambu actions [65] for the mixed-monodromy coordinates

{x̂Jaj}.

Another useful form of the J-basis action (3.41b) is

Ŝσ =
∑

j

fj(σ)−1
∑

J=0

∫

dtJj

∫ 2π

0
dξJj

1

8π

√

− det(ĥJj
mn) ĥmn

Jj ∂mx̂JajGab∂nx̂Jbj (3.42)

where I have relabelled the dummy variables {t, ξ → tJj , ξJj} separately in each of the K

terms. Then we see that the action of sector σ is locally invariant under the product of K

diffeomorphism groups

ξm′
Jj = ξm′

Jj ({ξp
Jj}), m = 0, 1, J = 0, . . . , fj(σ) − 1,

∑

j

fj(σ) = K (3.43a)

x̂Jaj′({ξp′
Jj}) = x̂Jaj({ξp

Jj}), a = 0, . . . , d − 1 (3.43b)

ĥJj′
mn({ξp′

Jj}) =
∂ξp

Jj

∂ξm′
Jj

∂ξq
Jj

∂ξn′
Jj

ĥJj
pq ({ξp

Jj}) (3.43c)

which are globally intertwined by the non-diagonal monodromies of the J-basis.

In principle, all the invariances of the J-basis can be mapped back into the twisted ̂-

basis via the monodromy-decompositions (3.39). I illustrate this here with the simple case

of the extended Weyl invariance, again leaving the finite form of the twisted diffeomorphism

groups for future work.

The Weyl invariance of Ŝσ in the J-basis is

ĥJj
mn → e−σ̂Jj ĥJj

mn, σ̂Jj(ξ + 2π, t) = σ̂J+1,j(ξ, t). (3.44)

Then, using the monodromy decomposition (3.39) of the extended metric and

σ̂(̂)j ≡
1

fj(σ)

fj(σ)−1
∑

J=0

e
2πi

̂J
fj (σ) σ̂Jj (3.45)

one finds the extended, twisted Weyl invariance in the monodromy-resolved ̂-basis:

ĥ(̂)j
mn →

1

fj(σ)

fj(σ)−1
∑

J,k̂=0

exp



2πi
J(k̂ − ̂)

fj(σ)
−

fj(σ)−1
∑

l̂=0

e
−2πi Jl̂

fj(σ) σ̂(l̂)j



 ĥ(k̂)j
mn(3.46a)

σ̂(̂)j(ξ + 2π, t) = e
−2πi ̂

fj(σ) σ̂(̂)j(ξ, t) (3.46b)

h̃mn
(̂)j → h̃mn

(̂)j , Ŝσ → Ŝσ. (3.46c)

Similarly, the standard conformal-gauge parametrization of the metric in the J-basis

ĥJj
mn = ηmne−φ̂Jj , φ̂Jj(ξ + 2π, t) = φ̂J+1,j(ξ, t) (3.47a)

φ̂(̂)j ≡
1

fj(σ)

fj(σ)−1
∑

J=0

e
2πi

̂J
fj(σ) φ̂Jj (3.47b)
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gives the promised conformal-gauge result (3.31) in terms of the K extended Weyl fields

{φ̂(̂)j} with diagonal monodromy.

As a simple example consider the case of Z2-permutation gravity, for which the

monodromy-resolved results above read:

ĥ(0)
mn → e−σ̂(0)(ĥ(0)

mn cos(σ̂(1)) − iĥ(1)
mn sin(σ̂(1))) (3.48a)

ĥ(1)
mn → e−σ̂(0)(ĥ(1)

mn cos(σ̂(1)) − iĥ(0)
mn sin(σ̂(1))) (3.48b)

ĥ(0)
mn = ηmne−φ̂(0) cos(φ̂(1)), ĥ(1)

mn = −iηmne−φ̂(0) sin(φ̂(1)) (3.48c)

σ̂(u)(ξ + 2π, t) = (−1)uσ̂(u)(ξ, t), φ̂(u)(ξ + 2π, t) = (−1)uφ̂(u)(ξ, t) (3.48d)

ĥ(u)
mn(ξ + 2π, t) = (−1)uĥ(u)

mn(ξ, t). (3.48e)

Here I have suppressed the single cycle index j = 0, and relabelled ¯̂ = ū = 0, 1. These

are the same extended Weyl transformations (2.62b) and conformal-gauge extended metric

(2.51b) found for Z2-permutation gravity in the open-string orientation-orbifold sectors,

except that those results were left in terms of the fields with non-diagonal monodromy

(0↔1)

σ̂0 = σ̂(0) + σ̂(1), σ̂1 = σ̂(0) − σ̂(1), φ̂0 = φ̂(0) + φ̂(1), φ̂1 = φ̂(0) − φ̂(1) (3.49)

which would be inappropriate for the final form of the permutation orbifolds.

4. Discussion

4.1 The conjecture: physical strings at higher central charge

Based on their extended (twisted) Virasoro algebras [27, 55, 35], I have found extended

world-sheet action formulations, of both Polyakov- and Nambu-type, in the twisted sectors

of the orbifolds of permutation-type. This includes in particular the twisted open-string

sectors at ĉ = 2d of the orientation orbifolds U(1)d/(Z2(w.s.)×H) and the twisted closed-

string sectors at ĉ = Kd of the permutation orbifolds U(1)Kd/H(perm), where in both

cases U(1)d is the d-dimensional free-bosonic closed-string CFT. The extended actions of

Polyakov-type exhibit a class of new extended (twisted) world-sheet gravities called the

permutation gravities, which are classified by the conjugacy classes of the permutation

groups. Both the Polyakov- and the Nambu-type actions are invariant under the extended,

twisted diffeomorphism groups generated by the extended Virasoro algebras.

In the covariant formulation of the corresponding Minkowski-space quantum theories,

each of these twisted sectors carries an increased number of negative-norm states (ghosts)

corresponding to the higher central charge. The negative norms are associated as usual

with the number of twisted time-like currents of each sector:

N∗ =

{

2 for open-string orient.orb.sectors

2K for closed-string perm.orb.sectors.
(4.1)
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For example, the 2K twisted time-like currents of the permutation orbifolds have the form

∂±x̂̂0j, ¯̂j = 0, 1, . . . , fj(σ) − 1,
∑

j

fj(σ) = K (4.2a)

Gab =

(

−1 0

0 11

)

, a = 0, 1, . . . , d − 1 (4.2b)

and (although it is masked by the unitary transformation (2.23) of the Minkowski metric)

the ghost-doubling in (4.1) for the orientation orbifolds follows in the same way from the

doubling ū = 0, 1 of the extended coordinates. In both cases, the counting (4.1) of time-like

currents holds as well for the untwisted sector of the orbifolds — where the doubling for

the orientation orbifolds counts both the left- and right-mover currents of the untwisted

closed-string CFT.

But we have seen the number N∗ earlier in our discussion. It is also the number of

degrees of freedom in the extended diffeomorphisms of each twisted sector, or equivalently

the number of extended Virasoro (Polyakov) constraints (see eqs. (2.56) and (3.9)) in

each sector. This allows us to conjecture that the orbifolds of permutation-type define

operator-string theories which are free of negative-norm states at higher central charge. In

particular, we may expect that the extended Virasoro constraints of the classical theories

will translate into extended physical-state conditions associated to extended Ward identities

for the twisted tree amplitudes and loops of the corresponding orbifold-string theories.

More precisely, consideration of orbifold-string loops and/or BRST operators for the

twisted sectors should fix the critical dimension of the ghost-free theories at d = 26, so

that the critical orbifold-string theories

U(1)26

Z2(w.s.) × H
, ĉ = 52 for open-string sectors (4.3a)

U(1)26K

H(perm)
, ĉ = 26K for all sectors (4.3b)

are orbifolds of decoupled copies of the critical free-bosonic string. This picture makes sense

because orbifolding should not create negative-norm states when the original symmetric

string theory was completely physical.

In the succeeding papers of this series, I will augment this intuition by constructing the

twisted BRST systems of ĉ = 52 matter, as well as new extended Ward identities, ghost-free

tree amplitudes and modular-invariant loops for the permutation orbifold-strings. I will

also be able to shed some light on the somewhat mysterious relation between orientation

orbifolds and conventional orientifolds.

The extended actions of Nambu-type offer another approach to this conjecture. In

this case one can choose an extended light-cone gauge (see Subsection 3.4) in each twisted

sector, which should then show effective central charges

ĉeff =

{

52 − 4 = (26 − 2) · 2 = 48 (orientation orbs)

(26 − 2)K = 24K (permutation orbs)
(4.4)
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for the physical (transverse) degrees of freedom in the critical orbifolds. Following ref. [66]

we know that consistency of this quantization will involve space-time interpretation of the

extended coordinates x̂ (52 or 26+26 ?), to be determined by closure of the appropriate

space-time group generators in each twisted sector.

4.2 Other orbifolds of permutation-type

Our classical discussion of the orbifolds of permutation-type is by no means complete.

Beyond the issues left unfinished here for the orientation and permutation orbifolds, many

other orbifolds of permutation-type are known, whose extended formulation can be studied

with the techniques developed here:

• The generalized free-bosonic permutation orbifolds [45, 46]

U(1)26K

H+
, H+ = H(perm) × H ′ (4.5)

at critical central charge ĉ = 26K. Here the group H+ can involve extra automor-

phisms H ′ which act uniformly on each closed-string copy U(1)26. Following the

reasoning above, I present only the initial data and the final form of the extended

action for each twisted sector of the generalized permutation orbifolds:

JaI
′ = PI

Jωa
bJbJ , J̄aI

′ = PI
Jωa

bJ̄bJ (4.6a)

P ∈ H(perm), ω ∈ H ′ (4.6b)

ωa
b(U †)b

n(r)µ = (U †)a
n(r)µe

−2πi
n(r)
ρ(σ) (4.6c)

Gn(r)µ;n(s)ν ≡ χn(r)µχn(s)νUn(r)µ
aUn(s)ν

bGab (4.6d)

= δn(r)+n(s),0 mod ρ(σ)Gn(r)µ;−n(r)ν (4.6e)

Ŝσ =
1

8π

∫

dt

∫ 2π

0
dξ × (4.6f)

×
∑

j

fj(σ)

fj (σ)−1
∑

̂,k̂,l̂=0

Ĥ(̂)j ĥmn

(̂+k̂+l̂)j
∂mx̂k̂n(r)µjGn(r)µ;n(s)ν∂nx̂l̂n(s)νj

x̂̂n(r)µj(ξ+2π, t) = e
−2πi

„

̂
fj (σ)

+ n(r)
ρ(σ)

«

x̂̂n(r)µj(ξ, t) (4.6g)

¯̂ = 0, 1, . . . , fj(σ) − 1,
∑

j

fj(σ) = K, n̄(r) ∈ (0, 1, . . . , ρ(σ) − 1).

(4.6h)

In these cases, the twisted metric G in eq. (4.6d) is constructed from the solution

of the H-eigenvalue problem (4.6c) of each extra automorphism ω ∈ H ′. Note in

particular that, as seen in the extended actions (4.6f), the generalized permutation

orbifolds involve the same twisted permutation gravities studied above.

We have seen such a universality before in the case of the Z2-permutation gravity of all

the orientation orbifolds. Indeed the permutation gravities couple universally to the
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extended stress tensors, which are associated to the same orbifold Virasoro algebras

(3.2) in each twisted sector of any orbifold of permutation-type. The orbifold Virasoro

algebras are themselves universal because they arise [35, 43] simply by twisting the

action of H(perm) on the ordinary decoupled Virasoro copies in the untwisted sector

of the orbifold — independent of the action of any particular H ′ on a given copy. For

the generalized permutation orbifolds in eq. (4.6), the explicit form of their “doubly-

twisted” current algebras (with modeing Jĵn(r)µj(m + ĵ
fj(σ) + n(r)

ρ(σ) ) and (conformal

gauge) extended stress tensors can be obtained by the substitution {a → n(r)µ,G →

G} in eqs. (3.14a,d,e).

• The free-bosonic open-string permutation orbifolds [45]

U(1)26K
open

H(perm)
(4.7)

and their T-dualizations [46] at critical central charge ĉ = 26K, which will also be

governed by the same permutation gravities. Starting from the left-mover data of the

generalized (closed-string) permutation orbifolds above, the generalized open-string

permutation orbifolds
U(1)26K

open

H(perm) × H ′
(4.8)

and their T-duals at ĉ = 26K can also be worked out as special cases of ref. [46].

(The sectors of the generalized open-string Z2-permutation orbifolds are T-dual to

the open-string sectors of the orientation orbifolds.)

• The superstring orbifolds of permutation-type at critical central charge ĉ = 10K (and

(ĉ, ˆ̄c) = (26K, 10K) for heterotic type). The first goal here will be the explicit form

of the world-sheet permutation supergravities, associated to the extended, twisted

superconformal algebras [22, 27] of these orbifolds.

• The partial orbifoldizations of permutation-type, for example

U(1)26 × U(1)26

Z2(D)
, 0 ≤ D ≤ 25, ĉ = 52 (4.9)

where Z2(D) exchanges only two subsets {D} of D bosons each. The single twisted

sector of this orbifold is described by a hybrid action

Ŝ = S1(26 − D) + S2(26 − D) + Ŝ(2D) (4.10)

where S1,2 are ordinary Polyakov actions for 26 − D untwisted bosons and Ŝ(2D)

is the extended action (3.28) with Z2-twisted permutation gravity coupled to 2D

twisted bosons

{x̂̂a0, ,∀ a ∈ {D}, ¯̂ = 0, 1}. (4.11)

Extensions to higher genus, as well as non-trivial B fields and twisted B fields [37]

can also be studied.

Our discussion above suggests that all the critical orbifold CFT’s of permutation-type

can describe twisted physical string systems at higher central charge.
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